Understanding Pressure Loss in Pipelines

Young Vit Education Days
Central Otago
$26^{\text {th }}$ June 2022

Terminology

Pressure

"Force that makes the flow of water strong or weak" - How much energy the water has
We need water pressure to get the water where it needs to go and ensure that it is coming out of the sprinkler/emitter correctly

$k P a$ (kilopascals)	Bar	mH (meters head)	PSI
100	1	10	14.5
400	4	40	59

Flow

"The amount of water flowing per unit of time" - How much water is being used
Flow is determined by how much water is coming out of the sprinkler/emitter and how many of these we have running at a time OR by how much the pump can produce.

I/s (litres per second)	Ipm (litres per minute)	m3/H (cubes an hour)
1	60	$3.6(3600$ litres $)$
5	300	$18(18,000$ litres $)$

Pipe Friction

As water moves through a pipe, friction occurs between molecules as it travels along the pipe.

Friction occurs between

- the fluid molecules and the pipe wall
- the fluid molecules tumbling past each other
turbulent flow

The faster the fluid is moving, the more turbulent it will be, the more friction will occur

Pressure Loss

As friction occurs, you loose energy which causes the pressure to drop between the start and end of the pipe when water is flowing

Factors affecting the amount of pressure loss through pipe

- the flow through the pipe
- the size/type of the pipe
- the length of the pipe

These factors affect how fast the water moves through the pipe

- Faster water = more turbulent
- More turbulent = more pressure loss

As pipeline gets longer, friction continues along the whole
length so more pressure loss will occur over a longer pipe

Pressure Loss Calculations

There are some complicated equations which are used to figure out how much friction loss we will have through a length of pipe....

Head Loss Darcy Weisbach

Equation

$\Delta h=f_{D} \frac{L}{D} \frac{V^{2}}{2 g}$
Δh - pressure loss in m
f_{D} - darcy friction factor
L - pipe length in m
D - hydraulic diameter in m
V - fluid flow avg velocity in m / s
$9-$ standard gravity $=9.81 \mathrm{~m} / \mathrm{s}^{2}$

Hazen-Williams formula

$$
h_{f}=\frac{10.44 \cdot L \cdot Q^{1.85}}{C^{1.85} \cdot d^{4.8655}}
$$

Where: $\quad h_{f}=$ head loss due to friction (ft)
$L=$ length of pipe (ft)
$Q=$ flow rate of water (gpm)
C = Hazen-Williams constant
$d=$ diameter of the pipe (in.)

....luckily we have handy calculators and spreadsheets to prevent us having to do these equations every day!!!

Slope

We also have to take slope into consideration as this will add or reduce pressure in our pipes

Scenario

Existing sprinkler
-15 m of 20 mm LDPE Pipe

Extend sprinkler to another location

- 100m extra pipe needed

What do we think will happen?
...the sprinkler looks terrible!!

- Not going the distance
- Flow stream looks weak
- The sprinkler isn't turning around properly

So what happened?

Water source $=350 \mathrm{kPa}$

Flowrate	Units			LD PE				HL from Lamonts EQN Velocity Flag
			Pipe id	Headloss		Velocity	PN Rating	
		15mm	$\begin{aligned} & \hline m m \\ & 12.8 \end{aligned}$	$\begin{gathered} m \\ 20.7 \end{gathered}$	$\begin{gathered} \hline \text { EQN } \\ \text { S3 } \end{gathered}$	m / s3.9	$\begin{aligned} & \text { Bar } \\ & 9.70 \end{aligned}$	Way Up!
0.5	1/s							
		20 mm	19.0	3.1	53	1.8	8.00	-
Length (m)	Flow Type	25 mm	25.3	0.8	53	1.0	6.00	-
		32 mm	31.1	0.3	53	0.7	5.00	-
15	FULL	40 mm	37.5	0.1	s3	0.5	0.00	-
		45 mm	-	-	53	-	-	-
PN Rating	Pipe Material	50 mm	50.0	0.0	53	0.3	0.00	-
6.3 Bar	LDPE	63 mm	-	-	53	-	-	-
		75 mm	-	-	53	-	-	-

15 m of pipe loses 3.1 m pressure

- Sprinkler has 319kPa and works well

Addding another 100 m of pipe gives another 20.9 m pressure loss
-Sprinkler now only has 110kPa which isn't enough to work properly

If we had gone up to 25 mm pipe instead we would have 266 kPa at the sprinkler which would have been OK

Scenario 2

Can we connect to the 25 mm valve and still have enough flow and pressure at the other end??

Flow $\mathrm{m}^{3} / \mathrm{hr}$	Pressure Loss bar
0.3	0.08
1.0	0.11
2.5	0.13
3.5	0.16
4.5	0.23
5.5	0.43
6.5	0.62
8.0	1.10
9.0	1.48

Flowrate	Units			LD PE				HL from Lamonts EaN
			Pipe id	Headloss	$\begin{gathered} \text { EQN } \\ 53 \end{gathered}$	Velocity	PN Rating	Velocity Flag
		15 mm	$\begin{aligned} & \mathrm{mm} \\ & 12.8 \end{aligned}$	$\begin{gathered} m \\ 14.0 \end{gathered}$		m/s	Bar	
4.5	m3/hr					9.7	9.70	Too High !!
		20 mm	19.0	2.1	¢3	4.4	8.00	Way Up!
Length (n)	Flow Type	25 mm	25.3	0.5	53	2.5	6.00	velocity Up
		32 mm	31.1	0.2	53	1.6	5.00	-
2	fuLL	40 mm	37.5	0.1	53	1.1	0.00	-
		45 mm	-	-	53	-	-	-
PN Rating	Pipe Material	50 mm	50.0	0.0	53	0.6	0.00	-
6.3 Bar	LDPE	63 mm	-	-	53	-	-	-
		75 mm	-	-	53	-	-	-

0.5 m loss through

2 m of 25 mm pipe
.23bar loss
through valve
0.28 bar plus 0.5 m
$=33 \mathrm{kPa}$ pressure loss

If we had 350 kPa at the other sprinkler line and lost 33kPa going to this line, the sprinklers will have 317 kPa here which will still be in operating range

So it should be all good!

Vineyard System

Aim of an irrigation design

- Water dispersed evenly across the block
- Water dispersed efficiently across the block

Other Considerations

- Split into a manageable amount of zones
- Split into different soil types/varieties
- Flow rate available from consent/existing pump

Design Differences

- There are many ways a designer can split up a block
- Cheapest design not necessarily going to be the cheapest long term
- Smaller Mainline will have a lower capital cost, but there is likely to be more pressure loss so the pump will have to pump at a higher pressure which will take more power to do so
- Pressure differences across the block can cause the drippers to wear out quicker, or some vines not to get as much water causing loss of yield or poor quality wine, etc

Summary

- There is never a "one size fits all" solution in irrigation
- We are always available to give advice \& find the best solution for you

Details that might be required

- Flow rate or type of sprinkler/emitters
- Pressure you have available
- Distance you want to go

